## TRIGONOMETRY CLASS 10 TEST PAPER

As we all know "Practice makes a man perfect" so, more you practice , better you perform. for the sake of your practice we prepared Practice Papers,Test Papers, Important Questions strictly based on Latest CBSE Curriculum and new Pattern.This Trigonometry Class 10 Test Paper is based on new pattern and has all type of Questions as objective type questions, short questions and long questions.

Practice Class 10 Pair of linear equations in two variables Test Paper Click Here

ONE MARK QUESTIONS
1. If ${\mathrm{sin}}^{2}A=\frac{1}{2}{\mathrm{tan}}^{2}{45}^{0},\text{ }where\text{ }A$ is an acute angle, thenthe value of $A$ $a) 45 0 b) 30 0 c) 60 0 d) 90 0$
2. Express $\mathrm{sin}{67}^{0}+\mathrm{cos}{75}^{0}$ in terms of trigonometric ratios of angles between ${0}^{0}\text{ }and\text{ }{45}^{0}.$
3. If ${\mathrm{sec}}^{2}\theta \left(1+\mathrm{sin}\theta \right)\left(1-\mathrm{sin}\theta \right)=k$ , then find the value of $k.$
4. $\mathrm{sin}\theta +\mathrm{cos}\theta$ is always greater then 1. (True/False)

TWO MARKS QUESTIONS

5. IF $\mathrm{sin}\theta +\mathrm{cos}\theta =\sqrt{3},$ then prove that $\mathrm{tan}\theta +\mathrm{cot}\theta =1.$
6. Find the value of $3\mathrm{cos}{68}^{0}.\mathrm{cos}ec{22}^{0}-\frac{1}{2}\mathrm{tan}{43}^{0}.\mathrm{tan}{47}^{0}.\mathrm{tan}{12}^{0}.\mathrm{tan}{60}^{0}.\mathrm{tan}{78}^{0}$
7. Prove that ${\left(\mathrm{cos}ec\theta -\mathrm{cot}\theta \right)}^{2}=\frac{1-\mathrm{cos}\theta }{1+\mathrm{cos}\theta }$ .

THREE MARKS QUESTIONS

8. $\frac{\mathrm{cos}ec\theta +\mathrm{cot}\theta }{\mathrm{cos}ec\theta -\mathrm{cot}\theta }=1+2{\mathrm{cot}}^{2}\theta +2\mathrm{cos}ec\theta \mathrm{cot}\theta$
9. Find an acute angle $\theta ,\text{ }when\text{ }\frac{\mathrm{cos}\theta -\mathrm{sin}\theta }{\mathrm{cos}\theta +\mathrm{sin}\theta }=\frac{1-\sqrt{3}}{1+\sqrt{3}}.$
10. If $\mathrm{cot}\theta =\frac{7}{8},\text{ }find\text{ }\frac{\left(1+\mathrm{sin}\theta \right)\left(1-\mathrm{sin}\theta \right)}{\left(1+\mathrm{cos}\theta \right)\left(1-\mathrm{cos}\theta \right)}$

FOUR MARKS QUESTIONS.

11. Prove that $\frac{1}{\left(\mathrm{cos}ec\text{ }x+\mathrm{cot}x\right)}-\frac{1}{\mathrm{sin}x}=\frac{1}{\mathrm{sin}x}-\frac{1}{\left(\mathrm{cos}ec\text{ }x-\mathrm{cot}x\right)}$
12. Prove that $\frac{\mathrm{tan}\theta }{1-\mathrm{cot}\theta }+\frac{\mathrm{cot}\theta }{1-\mathrm{tan}\theta }=1+\mathrm{sec}\theta \mathrm{cos}ec\theta =1+\mathrm{tan}\theta +\mathrm{cot}\theta$